

US009000141B2

(12) United States Patent

Chang et al.

(10) **Patent No.:**

US 9,000,141 B2

(45) **Date of Patent:**

Apr. 7, 2015

(54) LOCALIZATION AND CHARACTERIZATION OF FLAVIVIRUS ENVELOPE GLYCOPROTEIN CROSS-REACTIVE EPITOPES AND METHODS FOR THEIR USE

(75) Inventors: **Gwong-Jen J. Chang**, Fort Collins, CO (US); **Wayne D. Crill**, Fort Collins, CO

(US)

(73) Assignee: The United States of America as represented by the Secretary of the Department of Health and Human Services, Centers for Disease Control and Prevention, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 1227 days.

(21) Appl. No.: 12/892,714(22) Filed: Sep. 28, 2010

(65) Prior Publication Data

US 2011/0059131 A1 Mar. 10, 2011

Related U.S. Application Data

- (62) Division of application No. 11/572,805, filed as application No. PCT/US2005/026672 on Jul. 27, 2005, now Pat. No. 7,906,292.
- (60) Provisional application No. 60/591,898, filed on Jul. 27, 2004.

(51)	Int. Cl.	
	C07H 21/00	(2006.01)
	A61K 39/12	(2006.01)
	C07K 14/005	(2006.01)
	A61K 39/00	(2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC A61K 35/76; A61K 39/162; G01N 33/53; G01N 33/56983; C07K 14/18; C07K 14/1825; C12N 2770/24111; C12N 2770/24121; C12N 2770/24122; C12N 2770/24131

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,171,854 B1	1/2001	Galler et al.
6,383,488 B1	5/2002	Ramudo et al.
6,514,501 B1	2/2003	Kelly et al.
6,869,793 B2	3/2005	Cardosa et al.

FOREIGN PATENT DOCUMENTS

EP	0 341 444	11/1989
WO	WO 99/63095	12/1999
WO	WO 02/081754	10/2002

OTHER PUBLICATIONS

Allison et al. "Mutational Evidence for an Internal Fusion Peptide in Flavivirus Envelope Protein E," *Journal of Virology* 75(9): 4268-4275 (2001).

Bhardwaj et al. "Biophysical Characterization and Vector-Specific Antagonist Activity of Domain III of the Tick-Borne Flavivirus Envelope Protein," *Journal of Virology* 75(4): 4002-4007 (2001).

Cardosa et al. "Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses," *BMC Microbiology* 2(1): 9 (2002).

Chang et al. "A Single Intramuscular Injection of Recombinant Plasmid DNA Induces Protective Immunity and Prevents Japanese Encephalitis in Mice," *Journal of Virology* 74(9): 4244-4252 (2000). Chang et al. "Enhancing biosynthesis and secretion of premembrane and envelope proteins by the chimeric plasmid of dengue virus type 2 and Japanese encephalitis virus," *Virology* 306: 170-180 (2003).

Chiou et al., "Enzyme-Linked Immunosorbent Assays Using Novel Japanese Encephalitis Virus Antigen Improve the Accuracy of Clinical Diagnosis of Flavivirus Infection," *Clin. Vaccine Immunol.* 15(5):825-835 (2008).

Crill et al., "Humoral Immune Responses of Dengue Fever Patients Using Epitope-Specific Serotype-2 Virus-Like Particle Antigens," *PLoS One* 4(4):34991 (2009), 18 pages.

Crill et al. "A Detailed Mutagenesis Study of Flavivirus Cross-Reactive Epitopes using West Nile Virus-like Particles," *Journal of General Virology* 88(4): 1169-1174 (2007).

Crill and Chang, "Localization and characterization of flavivrius

Crill and Chang, "Localization and characterization of flavivrius envelope glycoprotein cross-reactive epitopes," *J. Virology* 78(34):13975-73986 (2004).

Greenspan et al. "Defining epitopes: It's not as easy as it seems," *Nature Biotechnology* 17: 936-937 (1999).

Guerois et al., "Predicting Changes in the Stability of Proteins and Protein Complexes: A Study of More Than 1000 Mutations," *J. Mol. Biol.* 320:369-387 (2002).

Halstead et al. "The future of dengue vaccines," *The Lancet* 360: 1243-1245 (2002).

Hoshino et al., "Mapping of antigenic sites involved in serotypecross-reactive neutralization on group A rotovirus outercapsid glycoprotein VP7," *Virol.* 199:233-237 (1994).

Lescar et al. "The Fusion Glycoprotein Shell of Semliki Forest Virus: An Icosahedral Assembly Primed for Fusogenic Activation at Endosomal pH," *Cell* 105: 137-148 (2001).

Modis et al., "A ligand-binding pocket in the dengue virus envelope protein," *PNAS* 100(12):6986-6991 (2003).

Op De Beeck et al. "Role of the Transmembrane Domains of prM and E Proteins in the Formation of Yellow Fever Virus Envelope," *Journal of Virology* 77(2): 813-820 (2003).

Pappu et al., "Molecular characterization of a structural epitope that is largely conserved among severe isolates of a plant virus," *Proc. Natl. Acad. Sci. USA*, 90:3641-3644, (Apr. 1993).

Rey et al., "The envelope glycoprotein from the tick-borne encephalitis virus at 2 Å resolution," *Nature* 375:291-298 (1995).

Rey, "Dengue virus envelope glycoprotein structure: New insight into its interactions during viral entry," *PNAS* 100:6899 (2003).

Roberson et al., "Differentiation of West Nile and St. Louis Encephalitis Virus Infections by Use of Noninfectious Virus-Like Particles with Reduced Cross-Reactivity," *J. Clin. Microbiol.*, 45:3167-3174, (Oct. 2007).

(Continued)

Primary Examiner — Stacy B Chen

(74) Attorney, Agent, or Firm — Klarquist Sparkman, LLP

(57) ABSTRACT

Disclosed herein is a method for identifying flavivirus cross-reactive epitopes. Also provided are flavivirus E-glycoprotein cross-reactive epitopes and flavivirus E-glycoprotein cross-reactive epitopes having reduced or ablated cross-reactivity (and polypeptides comprising such epitopes), as well as methods of using these molecules to elicit an immune response against a flavivirus and to detect a flaviviral infection.

21 Claims, 3 Drawing Sheets